
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Analysis of Multiplex Social Networks with R

Matteo Magnani
InfoLab

Uppsala University

Luca Rossi
DssLab

IT University of Copenhagen

Davide Vega
InfoLab

Uppsala University

Abstract

Multiplex social networks are characterized by a common set of actors connected
through multiple types of relations. The multinet package provides a set of R functions
to analyze multiplex social networks within the more general framework of multilayer
networks, where each type of relation is represented as a layer in the network. The
package contains functions to import/export, create and manipulate multilayer networks,
implementations of several state-of-the-art multiplex network analysis algorithms, e.g., for
centrality measures, layer comparison, community detection and visualization. Internally,
the package is mainly written in native C++ and integrated with R using the Rcpp
(Eddelbuettel and François 2011) library.

Keywords: networks, multiplex, multilayer, social network analysis, R.

1. Introduction and background

Multiplex social networks are characterized by a common set of actors connected through
multiple types of relations. In this article we introduce multinet, an R package to analyze
multiplex social networks represented within the more general framework of multilayer net-
works.
In the multilayer framework, each relation type is represented as a layer, so that for example
a layer can be used to store friendship ties while another layer contains working ties among
the same set of actors. Such a network can be used to study the relationships between these
two types of social ties, for example counting how often colleagues are also friends, and also to
study the relationships between actors and types of relations, for example whether a specific
actor tends to befriend all her co-workers or to keep these two social contexts separated.
Several packages for network analysis are available in R. Notable examples are statnet (Hand-
cock, Hunter, Butts, Goodreau, and Morris 2003), containing a collection of packages such as

http://dx.doi.org/10.18637/jss.v000.i00

2 Multiplex Networks Analysis with R

sna (Butts 2016), network (Butts 2015, 2008) and ergm (Hunter, Handcock, Butts, Goodreau,
and Morris 2008), igraph (Csardi and Nepusz 2006) and RSiena (Ripley, Snijders, Bóda,
Vörös, and Preciado 2018). Multinet complements this collection with several functions to
analyze multiplex networks. In particular, the package provides functions focusing on the
multilayer structure of the networks, for example to find how relevant some layers are for an
actor or to discover communities spanning multiple layers. Individual layers of a multiplex
network, each corresponding to a simple network, can instead be analyzed using the above-
mentioned packages, and in particular multinet contains functions to translate the layers into
igraph objects. The methods provided by multinet are distinct from the ones provided by
multiplex (Ostoic 2018).
Throughout this work we will follow the terminology described in (Dickison, Magnani, and
Rossi 2016). In particular, we will use the term “multilayer social network” to indicate a
network where vertices (V) are organized into multiple layers (L) and each vertex corresponds
to an actor (A), where the same actor can be mapped to vertices in different layers. More
formally, a multilayer social network as implemented in this package is a graph G = (V, E)
where V ⊂ A × L. This model, when used to describe multiplex networks, is a simplified
version of (Magnani and Rossi 2011), where the same actor can correspond to multiple vertices
in the same layer, and (Kivelä, Arenas, Barthelemy, Gleeson, Moreno, and Porter 2014), where
layers can be identified by an array of features called aspects (for example, each layer may
correspond to both a type of social relationship and a time).
Using multiple layers we can represent both edges among vertices in the same layer, called
intra-layer edges, and edges among vertices in different layers, called inter-layer edges. To
simplify the notation, both types of edges are defined in the package by a quadruple containing
two actor names i, j ∈ A and two layer names li, lj ∈ L, where (i, li) and (j, lj) represent the
two ends of the edge. Intra-layer edges are characterized by having the same layer li = lj at
the two ends, and in this article we mostly focus on multiplex networks, where only intra-layer
edges exist.

2. The Rcpp_RMLNetwork class
The multinet package defines a class to represent multilayer networks (Rcpp_RMLNetwork).
Objects of this type are used as input or returned as output by most functions provided by
the package.
Internally, all the objects constituting the network are stored in sets with logarithmic lookup
and random access time, implemented as skip lists. This solution is (linearly) less efficient
than using a set in the C++ standard library, but supports quick random access to the objects
in the set, which is important when synthetic networks are generated. For efficiency reasons,
most of the functions in the package are written in native C++ and integrated with R using
the Rcpp (Eddelbuettel and François 2011) library. Storage requirements for the network
class are on the order of the number of vertices plus the total number of edges (inter-layer
and intra-layer).
The ml_empty() function returns an empty multilayer network, not containing any actor,
layer, vertex or edge1. The function accepts an optional character argument name, indicating

1Other ways to create networks, explained later, are the function read_ml() to load networks from files
and the grow_ml() function to produce synthetic networks.

Journal of Statistical Software 3

the name of the network.

R> ml_empty()

Multilayer Network [0 actors, 0 layers, 0 vertices, 0 edges (0,0)]

For convenience, the call to any of the network’s constructors and readers returns an S4 object
compatible with the R print function. Otherwise, all the other functions’ return types are,
by design, either (i) a named list of elements (if the data is not relational) or (ii) a data frame.

2.1. Adding, retrieving and deleting network objects

Objects in a Rcpp_RMLNetwork object can be queried using a set of utility functions. Built-in
functions for retrieving and updating objects have the same signature name: <op>_<objects>_ml,
where <objects> can be actors, layers, vertices or edges, and <op> is either blank, if we
want to list the objects, or is the name of a specific operation: num, to compute the number
of objects of the requested type, add or delete. If the number of actors is requested without
specifying any layer, the total number of actors is returned, including those not present in
any layer.
All the aforementioned functions require an Rcpp_RMLNetwork object as first argument. List-
ing functions operating on actors and vertices also require an array of layer names: only the
actors/vertices in the input layers are returned. If the array is empty, all the actors/vertices
in the network are returned. Listing functions operating on edges, instead, require two pa-
rameters: one indicating the layer(s) from where the edges to be extracted start, and a second
one with the layer(s) where the edges to be extracted end. If an empty list of starting layers is
passed (default), all the layers are considered, while if an empty list of ending layers is passed
(default), the ending layers are set as equal to those in the first parameter.
Now we can show a small example of how these functions work together. We start by cre-
ating an empty network with two layers, named UL (upper layer) and BL (bottom layer),
respectively.

R> net <- ml_empty()
R> add_layers_ml(net, c("UL", "BL"))
R> layers_ml(net)

[1] "BL" "UL"

New layers are by default undirected, that is, edges added to them are treated as undi-
rected. Directed layers are created by setting the directed parameter to TRUE, or using the
set_directed_ml() function, which is necessary if we want to set directed intralayer edges.
This function takes an Rcpp_RMLNetwork object and a directionality data frame as input.
The next fragment of code changes the directionality of the inter-layer edges between the
bottom and upper layers.

R> dir <- data.frame(layer1="UL", layer2="BL", dir=1)
R> set_directed_ml(net, dir)
R> is_directed_ml(net)

4 Multiplex Networks Analysis with R

layer1 layer2 dir
1 BL BL 0
2 BL UL 1
3 UL BL 1
4 UL UL 0

Then, we create three actors A = {A1, A2, A3}.

R> add_actors_ml(net, "A")
R> add_actors_ml(net, c("B", "C"))

We can check that the actors have been added correctly:

R> num_actors_ml(net)

[1] 3

R> actors_ml(net)

[1] "C" "A" "B"

The next step to populate a network is to add actors to layers, where a pair actor-layer defines
a vertex. Notice that if we try to create the vertices without having added the corresponding
actors, the function will raise an error.

R> vertices <- data.frame(
+ actors = c("A", "B", "C", "A", "B", "C"),
+ layers = c("UL", "UL", "UL", "BL", "BL", "BL"))
R> vertices

actors layers
1 A UL
2 B UL
3 C UL
4 A BL
5 B BL
6 C BL

R> add_vertices_ml(net, vertices)
R> vertices_ml(net)

actor layer
1 C BL
2 A BL
3 B BL
4 C UL
5 A UL
6 B UL

Journal of Statistical Software 5

From the previous command you can see how the objects in a network are stored into (math-
ematical) sets, that is, they are unordered: we cannot assume that actor A will always be
listed before actor B, and we have to sort the results if we want to keep a specific order.
We can now add some intra-layer edges, in this case between all the vertices in the upper
layer and between vertices A and C in the bottom one. In addition, we create inter-layer
edges between vertices ((A, UL), (B, BL)) and ((A, UL), (C, BL)). We begin by creating two
data frames, one for each type of edges:

R> intra_layer_edges <- data.frame(
+ actors_from = c("A", "A", "B", "A"),
+ layers_from = c("UL", "UL", "UL", "BL"),
+ actors_to = c("B", "C", "C", "C"),
+ layers_to = c("UL", "UL", "UL", "BL"))
R> intra_layer_edges

actors_from layers_from actors_to layers_to
1 A UL B UL
2 A UL C UL
3 B UL C UL
4 A BL C BL

R> inter_layer_edges <- data.frame(
+ actors_from = c("A", "A"),
+ layers_from = c("UL", "UL"),
+ actors_to = c("B", "C"),
+ layers_to = c("BL", "BL"))
R> inter_layer_edges

actors_from layers_from actors_to layers_to
1 A UL B BL
2 A UL C BL

Now we can add these edges to the network, and observe the result.

R> add_edges_ml(net, intra_layer_edges)
R> add_edges_ml(net, inter_layer_edges)
R> edges_ml(net)

from_actor from_layer to_actor to_layer dir
1 A BL C BL 0
2 A BL B UL 1
3 A BL C UL 1
4 A UL B UL 0
5 B UL C UL 0
6 A UL C UL 0

R> edges_ml(net, layers1 = "BL")

6 Multiplex Networks Analysis with R

from_actor from_layer to_actor to_layer dir
1 A BL C BL 0

Notice that as we have only passed one argument (layers1 = "BL"), edges_ml() returns
only the intra-layer edges in the BL layer.

2.2. Handling attributes

When we study a multilayer network, we can be interested in representing different types of
actors, add some categorical attribute to vertices or use a numerical value to represent the
strength of the ties. The multinet package provides a set of functions to create attributes and
add and retrieve attribute values. attributes_ml() returns a data frame with two columns,
the name of the attribute and its type. As most of the functions in the package, the function
accepts a filtering parameter, target, to limit the query to specific types of objects: “actor”
(attributes attached to actors), “vertex” (attributes attached to vertices) or “edge” (attributes
attached to edges). All the functions handling attributes use target = "actor" by default.

R> attributes_ml(net)

[1] name type
<0 rows> (or 0-length row.names)

The list of attributes of a newly created network is empty. We can create attributes by calling
the add_attributes_ml() function and passing an Rcpp_RMLNetwork object, names of the
attributes, types of the attributes (“string” or “numeric”) and the target as parameters.
For example, the following code creates two string attributes for actors (notice that "actors"
is the default target, and "string" is the default attribute type):

R> add_attributes_ml(net, c("name", "surname"))
R> attributes_ml(net)

name type
1 name string
2 surname string

Using the add_attributes_ml() function we can also specifcy different attributes for nodes
and edges on individual layers, for which we must supply the layer parameter. If we want,
instead, to manage inter-layer edges two parameters are needed, layer1 and layer2, so that
the attribute only applies to inter-layer edges from the first layer to the second and vice-versa.
The example below shows how to use these parameters in practice to create a string attribute
for the vertices in the bottom layer.

R> add_attributes_ml(net, "username", type = "string", target = "vertex",
+ layer = "BL")
R> attributes_ml(net, target = "vertex")

layer name type
1 BL username string

Journal of Statistical Software 7

At this point the get_values_ml() and set_values_ml() functions can be used to set and
retrieve attribute values.

R> set_values_ml(net, "name", c("A", "B"), values = c("Alice", "Scrondo"))
R> get_values_ml(net, "name", c("A", "C"))

value
1 Alice
2

3. Input, output and generation of RMLNetwork data
In the previous section we have introduced the Rcpp_RMLNetwork class and various methods to
modify Rcpp_RMLNetwork objects. However, users would more often create Rcpp_RMLNetwork
objects by reading them from a file, artificially generating them, or loading some of the
datasets directly available in the package

3.1. Importing and exporting data

The multinet package provides two input/output functions: read_ml() and write_ml().
Networks can be read from files using a package-specific text-based format, and written to
file using the same format or the GraphML syntax2. The multinet format is not compatible
with other packages, but it allows us to specify various details, such as the directionality of
intra-layer edges and attributes, as in the following example:

#VERSION
2.0

#TYPE
multiplex

#LAYERS
research, UNDIRECTED
twitter, DIRECTED

#ACTOR ATTRIBUTES
affiliation,STRING

#VERTEX ATTRIBUTES
twitter, num_tweets, NUMERIC

#EDGE ATTRIBUTES
research, num_publications, NUMERIC

2http://graphml.graphdrawing.org

8 Multiplex Networks Analysis with R

#ACTORS
Luca,ITU
Matteo,UU
Davide,UU

#VERTICES
Luca,twitter,53
Matteo,twitter,13

#EDGES

Luca,Matteo,research,9
Luca,Matteo,twitter

When we read this multiplex network we can also specify that we want all the actors to be
present in all the layers, using the align parameter. The difference between the two obtained
networks can be seen by checking the basic network statistics:

R> net <- read_ml(file = "example_io.mpx")
R> net

Multilayer Network [3 actors, 2 layers, 4 vertices, 2 edges (2,0)]

R> aligned_net <- read_ml("example_io.mpx", align = TRUE)
R> aligned_net

Multilayer Network [3 actors, 2 layers, 6 vertices, 2 edges (2,0)]

Both Rcpp_RMLNetwork objects, net and aligned_net, have two layers and three actors; but
the align = TRUE parameter in the second call to the read_ml() adds a new vertex to each
layer for every actor in the input file.
When no special information is needed, e.g., there are no attributes, no isolated nodes and
all edges are undirected, the format becomes as simple as a list of layer-annotated edges:

Luca,Matteo,research
Davide,Matteo,research
Luca,Matteo,friendship

A multiplex network can also be created starting from igraph objects, where each graph
represents a layer. For this to be possible, the vertices of the graphs must have a name
attribute indicating the name of the corresponding actor.
For example, consider the following graphs:

R> l1 <- read.graph("example_igraph1.dat", format = "ncol")
R> l1

Journal of Statistical Software 9

IGRAPH 838463a UN-- 3 3 --
+ attr: name (v/c)
+ edges from 838463a (vertex names):
[1] A--B A--C B--C

R> l2 <- read.graph("example_igraph2.dat", format = "ncol")
R> l2

IGRAPH ac5a772 UN-- 2 1 --
+ attr: name (v/c)
+ edge from ac5a772 (vertex names):
[1] A--C

They can be added as layers of a multiplex network as follows:

R> n <- ml_empty()
R> add_igraph_layer_ml(n, l1, "layer1")
R> add_igraph_layer_ml(n, l2, "layer2")
R> n

Multilayer Network [3 actors, 2 layers, 5 vertices, 4 edges (4,0)]

R> edges_ml(n)

from_actor from_layer to_actor to_layer dir
1 A layer1 B layer1 0
2 A layer1 C layer1 0
3 B layer1 C layer1 0
4 A layer2 C layer2 0

3.2. Generation

The package provides basic functionality to generate synthetic multiplex networks, following
the approach proposed by Magnani and Rossi (2013a). This problem is approached by al-
lowing layers to evolve at different rates, based on internal or external dynamics. Internal
dynamics can be modelled using existing network models (for example, preferential attach-
ment), assuming that how the layer grows can be explained only looking at the layer itself.
External dynamics involve importing edges from other layers. Within this perspective the
intuition is that relations existing on a layer might naturally expand over time into other
layers (e.g., co-workers starting to add each other as friends on Facebook). The package also
allows different growing rates for different layers.
In the following example we create a multiplex network with 3 layers based on the Preferential
Attachment (Barabási and Albert 1999) and the Erdos-Renyi models (Erdos and Rényi 1960).
The first and last layers will only evolve according to their internal models (pr.external =
0), while the second will have a probability of .8 of evolving according to external dynamics,
that is, importing edges from other layers (pr.external = .8). Note that all the probability

10 Multiplex Networks Analysis with R

vectors must have the same number of fields, one for each layer. By defining pr.internal and
pr.external, we are also implicitly defining pr.no.action (1 minus the other probabilities,
for each field/layer). In the example, the third layer grows at a lower speed than the others,
having an (implicitly defined) pr.no.action = .1.

R> models_mix <- c(evolution_pa_ml(3, 1), evolution_er_ml(100),
+ evolution_er_ml(100))
R> pr.internal <- c(1, .2, .9)
R> pr.external <- c(0, .8, 0)

The probability to import edges from the other layers in case external events happen is
specified using a dependency matrix. The following matrix specifies that the second layer
should import edges from the first layer with probability 1 if an external evolutionary event
is triggered. It is expected that the values on each row of the matrix add to 1.

R> dependency <- matrix(c(1, 1, 0, 0, 0, 0, 0, 0, 1), 3, 3)
R> dependency

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 0 0 1

We can now generate the network, with 100 actors and 100 growing steps.

R> ml_generated_mix <- grow_ml(100, 100, models_mix, pr.internal, pr.external,
+ dependency)
R> num_edges_ml(ml_generated_mix, layers1 = "l0")

[1] 84

R> num_edges_ml(ml_generated_mix, layers1 = "l1")

[1] 100

R> num_edges_ml(ml_generated_mix, layers1 = "l2")

[1] 56

3.3. Predefined data
Another way to obtain network data without having to manually construct it is to load some
well-known networks already available inside the package. These are loaded using functions
beginning with “ml”, followed by the name of the network, e.g., ml_florentine().
In the remainder of the article we will use the AUCS network, included in the current version
of the multinet package as an example dataset and often used in the literature to test new
methods. The data, described by Dickison et al. (2016), were collected at a university research
department and include five types of online and offline relations. The population consists of
61 employees, incuding professors, postdocs, PhD students and administrative staff.

Journal of Statistical Software 11

R> net <- ml_aucs()
R> net

Multilayer Network [61 actors, 5 layers, 224 vertices, 620 edges (620,0)]

R> layers_ml(net)

[1] "facebook" "leisure" "coauthor" "lunch" "work"

4. Data exploration
Multinet provides a basic visualisation function. We can produce a default visualization just
by executing plot(net), but to make the plot more readable we shall add a few details. In
particular: (1) we explicitly compute a layout that draws each layer independently of the
others, as declared by setting interlayer weights (w_inter) to 0, (2) we plot the layers on two
rows, to better use the space on the page (grid), (3) we remove the labels from the vertices,
to increase readability (vertex.labels = ""), and (4) we add a legend with the names of the
layers. The multiforce layout, used for all graph visualizations in this article, is described in
(Fatemi, Magnani, and Salehi 2018). The result of the following command is shown in Fig. 1.

R> l <- layout_multiforce_ml(net, w_inter = 0, gravity = 1)
R> bk <- par("mar")
R> par(mar=c(0,0,0,0))
R> plot(net, layout = l, grid = c(2, 3), vertex.labels = "",
+ legend.x = "bottomright", legend.inset = c(.05, .05))
R> par(mar=bk)

We can also use the attributes to inspect the relationship between the role of the actors and
the topology of the network. We start by retrieving the role of each vertex (vertex_roles),
and a list of all the distinct roles.

R> attr_values <- get_values_ml(net, actors = vertices_ml(net)[[1]],
+ attribute = "role")
R> vertex_roles <- as.factor(attr_values[[1]])
R> num_distinct_roles <- length(levels(vertex_roles))
R> levels(vertex_roles)

[1] "Admin" "Assistant" "Associate"
[4] "Emeritus" "NA" "PhD"
[7] "Phd (visiting)" "Postdoc" "Professor"

Now we can map each vertex role into a color, representing the role of the corresponding
actor. To do this, we use the RColorBrewer package, allowing us to produce an appropriate
combination of colors.

12 Multiplex Networks Analysis with R

facebook
leisure
coauthor
lunch
work

Figure 1: A basic visualization of the AUCS network

R> color_map = brewer.pal(num_distinct_roles, "Paired")
R> vertex_colors <- color_map[vertex_roles]

Plotting works as usual, with an additional parameter to set the vertex colors (vertex.color)
and two legends for the edge types and for the roles.

R> bk <- par("mar")
R> par(mar=c(0,0,0,0))
R> plot(net, layout = l, grid = c(2, 3), vertex.labels = "",
+ vertex.color = vertex_colors)
R> par(mar=bk)
R> legend("bottomright", legend=levels(vertex_roles), col = color_map,bty = "n",
+ pch = 20, pt.cex = 1, cex = .5, inset = c(0.05, 0.05))
R> legend("bottomright", legend=layers_ml(net), bty = "n", pch = 20, pt.cex = 1,
+ cex = .5, inset = c(0.2, 0.05))

Journal of Statistical Software 13

Admin

Assistant

Associate

Emeritus

NA

PhD

Phd (visiting)

Postdoc

Professor

facebook

leisure

coauthor

lunch

work

Figure 2: A visualization of the AUCS network where vertex colors represent roles

5. Measuring a network
A traditional way of measuring a multiplex network is to focus on each layer at a time,
considering it as an independent graph. For example, the summary() function computes a
selection of measures on all the layers, and also on the flattened network.

R> summary(net)

n m dir nc dens cc apl dia
flat 61 620 0 1 0.33879781 0.4761508 2.062842 4
coauthor 25 21 0 8 0.07000000 0.4285714 1.500000 3
facebook 32 124 0 1 0.25000000 0.4805687 1.955645 4
leisure 47 88 0 2 0.08140611 0.3430657 3.115911 8
lunch 60 193 0 1 0.10903955 0.5689261 3.188701 7
work 60 194 0 1 0.10960452 0.3387863 2.390395 4

The columns indicate:

14 Multiplex Networks Analysis with R

1. n order (number of vertices)

2. m size (number of edges)

3. dir directionality

4. nc number of connected components (strong components for directed networks)

5. dens density

6. cc clustering coefficient (directed networks are treated as undirected)

7. apl average path length

8. dia diameter

To compute other functions or perform another type of layer-by-layer analysis we can convert
the layers into igraph objects, using the as.igraph() function, for a single (group of) layer(s),
or the as.list() function to obtain a list with all the layers as igraph objects in addition to
the flattened network. Once the igraph objects have been generated, all the network measures
available in igraph can be computed. The following code, for example, uses igraph to compute
the degree centralization of the facebook layer:

R> layers <- as.list(net)
R> names(layers)

[1] "_flat_" "coauthor" "facebook" "leisure" "lunch" "work"

R> centralization.degree(layers[[3]])$centralization

[1] 0.233871

As another example of layer-by-layer analysis, Fig. 3 shows the degree distribution of each
layer, and also the degree distribution of the flattened network.

5.1. Layer comparison

In addition to a layer-by-layer analysis, we can compare layers using several different ap-
proaches. All the methods mentioned in this section are explained and evaluated in (Brodka,
Chmiel, Magnani, and Ragozini 2018).
For example, to quantify the difference between the degree distributions in different layers we
can use the layer_comparison_ml() function to produce a table with pair-wise comparisons.
The following code computes the dissimilarity between degree distributions, computed using
the Jeffrey dissimilarity function (the higher the values, the most dissimilar the two layers).

R> layer_comparison_ml(net, method = "jeffrey.degree")

Journal of Statistical Software 15

flattened

degree

F
re

qu
en

cy

10 20 30 40 50

0
1

2
3

4
5

facebook

degree

F
re

qu
en

cy

2 4 6 8 10 12 14

0
1

2
3

4

leisure

degree

F
re

qu
en

cy

2 4 6 8 10 12 14

0
5

10
20

coauthor

degree

F
re

qu
en

cy

1 2 3 4 5

0
5

10
20

lunch

degree

F
re

qu
en

cy

2 4 6 8 10 12 14

0
5

10
15

work

degree

F
re

qu
en

cy

0 5 10 15 20 25

0
4

8

Figure 3: Frequency distribution for vertices degree on each layer.

facebook leisure coauthor lunch work
facebook 0.0000000 1.0177980 2.0214010 0.4207678 0.7106788
leisure 1.0177980 0.0000000 0.4521076 1.3288250 0.2118452
coauthor 2.0214010 0.4521076 0.0000000 2.8966530 0.5917494
lunch 0.4207678 1.3288250 2.8966530 0.0000000 0.8372414
work 0.7106788 0.2118452 0.5917494 0.8372414 0.0000000

The layer_comparison_ml() function can also be used to compute multiplex-specific com-
parisons considering the fact that the same actors may be present on the different layers. In
fact, one important comparison can be made to check to what extent this is true:

R> layer_comparison_ml(net, method = "jaccard.actors")

facebook leisure coauthor lunch work
facebook 1.0000000 0.5192308 0.2954545 0.5333333 0.5333333
leisure 0.5192308 1.0000000 0.4117647 0.7833333 0.7833333
coauthor 0.2954545 0.4117647 1.0000000 0.4166667 0.4166667
lunch 0.5333333 0.7833333 0.4166667 1.0000000 0.9672131
work 0.5333333 0.7833333 0.4166667 0.9672131 1.0000000

The function returns 0 if there are no common actors between the pair of layers, and 1 if the
same actors are present in the two layers. If there is a strong overlapping between the actors,
then we can ask whether actors having a high (or low) degree on one layer behave similarly
in other layers. To do this we can compute the correlation between the degrees:

16 Multiplex Networks Analysis with R

R> layer_comparison_ml(net, method = "pearson.degree")

facebook leisure coauthor lunch work
facebook 1.0000000 0.37817432 0.5472774 0.3125598 0.54060113
leisure 0.3781743 1.00000000 0.4808447 0.2815167 0.06805041
coauthor 0.5472774 0.48084471 1.0000000 0.1486368 0.42719422
lunch 0.3125598 0.28151667 0.1486368 1.0000000 0.24647515
work 0.5406011 0.06805041 0.4271942 0.2464752 1.00000000

The Pearson (or linear) correlation between the degree of actors in the two layers is in the
interval [−1, 1]. The smallest value (-1) indicates that high-degree actors in one layer are
low-degree in the other and vice versa, while the largest value (1) is returned if high-degree
(resp., low-degree) actors in one layer are high-degree (resp., low-degree) actors in the other.
It is important to note that the correlation only depends on the number of incident edges
for each pair (actor, layer), and not on which actors are adjacent: they can be the same or
different actors.
We can also check to what extent actors are adjacent to the same other actors in different
layers, by checking the amount of overlapping between edges in the two layers, which will be
0 if no actors that are adjacent in one layer are also adjacent in the other and 1 if all pairs of
actors are either adjacent in both layers or in none.

R> layer_comparison_ml(net, method = "jaccard.edges")

facebook leisure coauthor lunch work
facebook 1.00000000 0.1584699 0.05839416 0.17843866 0.18656716
leisure 0.15846995 1.0000000 0.10101010 0.27727273 0.20512821
coauthor 0.05839416 0.1010101 1.00000000 0.06467662 0.09137056
lunch 0.17843866 0.2772727 0.06467662 1.00000000 0.33910035
work 0.18656716 0.2051282 0.09137056 0.33910035 1.00000000

The package provides additional similarity functions, listed in Table 1.

5.2. Degree and degree deviation

Various functions can be used to measure individual actors. As a starting point, the following
is the list of highest-degree actors on the whole multiplex network:

R> deg <- head(sort(degree_ml(net), decreasing = T))
R> deg

U4 U67 U91 U79 U123 U110
49 47 46 44 44 41

However, in a multiplex context degree becomes a layer-specific measure. We can no longer
just ask “who is the most central actor” but we should ask “who is the most central actor
on this layer?” Let us see how the most central actors look like when we “unpack” their
centrality on the different layers:

Journal of Statistical Software 17

Overlapping Distribution dissimilarity Correlation
jaccard.actors dissimilarity.degree pearson.degree
jaccard.edges KL.degree rho.degree
jaccard.triangles jeffrey.degree
coverage.actors
coverage.edges
coverage.triangles
sm.actors
sm.edges
sm.triangles
rr.actors
rr.edges
rr.triangles
kulczynski2.actors
kulczynski2.edges
kulczynski2.triangles
hamann.actors
hamann.edges
hamann.triangles

Table 1: Similarity functions provided in the package.

R> data.frame(
+ facebook = degree_ml(net, actors = names(deg), layers = "facebook"),
+ leisure = degree_ml(net, actors = names(deg), layers = "leisure"),
+ lunch = degree_ml(net, actors = names(deg), layers = "lunch"),
+ coauthor = degree_ml(net, actors = names(deg), layers = "coauthor"),
+ work = degree_ml(net, actors = names(deg), layers = "work"),
+ flat = deg)

facebook leisure lunch coauthor work flat
U4 12 1 15 NA 21 49
U67 13 2 12 NA 20 47
U91 14 14 7 3 8 46
U79 15 7 13 NA 9 44
U123 11 NA 6 NA 27 44
U110 9 7 7 4 14 41

From the above result we can see how neighbors may not be equally distributed across the
layers. Actor U4, for example, has the largest degree within the 6 actors analyzed in both the
facebook layer and the flattened network. However, it has no presence in the coauthor layer
and a very small degree in the leisure layer. If we want to quantify to what extent actors
have similar or different degrees on the different (combinations of) layers, we can compute
the standard deviation of the degree:

R> sort(degree_deviation_ml(net, actors = names(deg)))

18 Multiplex Networks Analysis with R

U110 U91 U79 U67 U4 U123
3.310589 4.261455 5.230679 7.418895 8.133880 9.987993

5.3. Neighborhood and exclusive neighboorhood

The neighbors of an actor a are those distinct actors that are adjacent to a on a specific input
layer, or on a set of input layers. While on a single layer degree and neighborhood have the
same value, they can be different when multiple layers are taken into account, because the
same actors can be adjacent on multiple layers leading to a higher degree but not a higher
neighborhood.

R> degree_ml(net, actors = "U4", layers = c("work", "lunch"))

U4
36

R> neighborhood_ml(net, actors = "U4", layers = c("work", "lunch"))

U4
21

The xneighborhood_ml() function (exclusive neighborhood) counts the neighbors that are
adjacent to a specific actor only on the input layer(s) Berlingerio, Coscia, Giannotti, Monreale,
and Pedreschi (2012). A high exclusive neighborhood on a layer (or set of layers) means that
the layer is important to preserve the connectivity of the actor: if the layer disappears, those
neighbors would also disappear.

R> neighborhood_ml(net, actors = "U91", layers = c("facebook", "leisure"))

U91
22

R> xneighborhood_ml(net, actors = "U91", layers = c("facebook", "leisure"))

U91
13

5.4. Relevance

Based on the concept of neighborhood, we can define a measure of layer relavance for actors
(Berlingerio, Pinelli, and Calabrese 2013). relevance_ml() computes the ratio between the
neighbors of an actor on a specific layer (or set of) and the total number of her neighbors.
Every actor could be described as having a specific “signature” represented by her presence
on the different layers.

Journal of Statistical Software 19

R> data.frame(
+ facebook = relevance_ml(net, actors = "U123", layers = "facebook"),
+ leisure = relevance_ml(net, actors = "U123", layers = "leisure"),
+ lunch = relevance_ml(net, actors = "U123", layers = "lunch"),
+ coauthor = relevance_ml(net, actors = "U123", layers = "coauthor"),
+ work = relevance_ml(net, actors = "U123", layers = "work"))

facebook leisure lunch coauthor work
U123 0.3793103 NA 0.2068966 NA 0.9310345

Similarly to neighborhood also relevance can be defined using the concept of exclusive neigh-
bor. The xrelevance_ml() function measures how much the connectivity of an actor (in
terms of neighbors) would be affected by the removal of a specific layer (or set of layers):

R> data.frame(
+ facebook = xrelevance_ml(net, actors = "U123", layers = "facebook"),
+ leisure = xrelevance_ml(net, actors = "U123", layers = "leisure"),
+ lunch = xrelevance_ml(net, actors = "U123", layers = "lunch"),
+ coauthor = xrelevance_ml(net, actors = "U123", layers = "coauthor"),
+ work = xrelevance_ml(net, actors = "U123", layers = "work"))

facebook leisure lunch coauthor work
U123 0.06896552 NA 0 NA 0.5172414

5.5. Distances
In addition to single-actor measures, the package can also be used to compute multilayer
distances between pairs of actors. Distances are defined by Magnani and Rossi (2013b) as
sets of lengths of Pareto-optimal multidimensional paths. As an example, if two actors are
adjacent on two layers, both edges would qualify as Pareto-optimal paths from one actor to
the other, as edges on different layers are considered incomparable (that is, it is assumed that
it makes no sense in general to claim that two adjacent vertices on Facebook are closer or
further than two adjacent vertices on the co-author layer). Pareto-optimal paths can also
span multiple layers.

R> distance_ml(net, "U91", "U4")

from to facebook leisure coauthor lunch work
1 U91 U4 1 0 0 0 0
2 U91 U4 0 3 0 0 0
3 U91 U4 0 0 2 1 0
4 U91 U4 0 0 0 2 0
5 U91 U4 0 1 0 0 1
6 U91 U4 0 0 2 0 1
7 U91 U4 0 0 0 1 1
8 U91 U4 0 0 0 0 2
9 U91 U4 0 1 0 1 0
10 U91 U4 0 2 1 0 0

20 Multiplex Networks Analysis with R

6. Community detection
A common network mining task is the identification of communities. An imprecise but gener-
ally accepted definition of community is as a subgroup of actors who are more densly connected
among themselves than with the rest of the network.
The function glouvain_ml() uses the algorithm described by Mucha, Richardson, Macon,
Porter, and Onnela (2010) to find community structures across layers, where vertices in
different layers can belong to the same or a different community despite corresponding to
the same actor. This method belongs to the class of community detection methods based on
modularity optimization, that is, it tries to find an assignment of the vertices to communities
so that the corresponding value of modularity is as high as possible. Multilayer modularity is
a quality function that is high if most of the edges are between vertices in the same community
and if vertices corresponding to the same actors are also often in the same community. The
function glouvain_ml() accepts three parameters to modify the resolution of the modularity
(gamma), the inter-layer weight connectivity (omega) and the number of nodes after which
the algorithm will make the computation on the fly without keeping the full data in memory
(limit).

R> ml_clust <- glouvain_ml(net)
R> head(ml_clust)

actor layer cid
1 U126 leisure 0
2 U126 lunch 0
3 U126 work 0
4 U138 leisure 0
5 U138 coauthor 0
6 U138 lunch 0

The result of the function is a data frame with two columns identifying a vertex, as a pair
(actor,layer), and a third column with a numeric value (cid) identifying the community to
which the vertex belongs.
The package provides other community detection algorithms: multilayer clique percolation
(ML-CPM) (Afsarmanesh and Magnani 2018), ABACUS (Berlingerio et al. 2013) (for over-
lapping and partial community detection) and Infomap (De Domenico, Lancichinetti, Are-
nas, and Rosvall 2015) (for partitioning/overlapping community detection on undirected or
directed networks):

R> c1 <- abacus_ml(net, 4, 2)
R> c2 <- clique_percolation_ml(net, 4, 2)
R> c3 <- glouvain_ml(net)
R> c4 <- infomap_ml(net)

We can now compare these community detection methods by computing some statistics about
(1) the number of communities generated, (2) the average community size, (3) the percentage
of vertices included in at least one cluster (which is 1 for complete community detection
methods), (4) the percentage of actors included in at least one cluster (which is 1 for complete

Journal of Statistical Software 21

facebook
leisure
coauthor
lunch
work

Figure 4: Multilayer representation of communities in the AUCS network detected using the
generalized Louvain (glouvain) method.

community detection methods) and (5) the ratio between the number of actor-community
pairs and the number of clustered actors, indicating the level of overlapping (which is 1
for partitioning community detection methods and higher for overlapping methods). The
corresponding statistics for the AUCS network are the following (code to build the dataframe
not shown):

R> com_stats

num avg_s clust_vertices clust_actors actor_overl
abacus 18 10.88889 0.5625 0.7704918 1.978723
clique p. 11 11.27273 0.3750 0.5081967 1.838710
louvain 5 44.80000 1.0000 1.0000000 1.000000
infomap 6 37.33333 1.0000 1.0000000 1.000000

The same comparison can be performed on some of the other datasets included in the library,
for example the bank wiring network:

22 Multiplex Networks Analysis with R

R> com_stats

num avg_s clust_vertices clust_actors actor_overl
abacus 10 8.8 0.6451613 0.7142857 3.8
clique p. 2 8.0 0.2580645 0.5714286 1.0
louvain 2 31.0 1.0000000 1.0000000 1.0
infomap 1 62.0 1.0000000 1.0000000 1.0

and the monastery network:

R> com_stats

num avg_s clust_vertices clust_actors actor_overl
abacus 51 16.19608 0.7600000 1.0000000 15.55556
clique p. 4 9.50000 0.1714286 0.5555556 1.70000
louvain 3 58.33333 1.0000000 1.0000000 1.00000
infomap 1 175.00000 1.0000000 1.0000000 1.00000

7. Conclusion
In this article we have presented the multinet package and some of its functions to create and
analyze multiplex networks. The package provides a wide range of network analysis methods
to analyze individual actors, identify groups (communities) and compare layers, in addition
to functions to explore and generate network data. multinet is also integrated with igraph,
so that single layers or flattened sets of layers can also be analyzed using more traditional
methods.

Acknowledgments
We thank Mikael Dubik for the implementation of the generalized Louvain method, and
several people who participated in our training workshops or contacted us to suggest features
and report bugs. The multinet package includes the following external code: eclat3 (for
association rule mining), Eigen4 and spectra5 (for matrix manipulation), Infomap6 (for the
Infomap community detection method) and Howard Hinnant’s date and time library7.
This work was partially supported by the European Community through the project “Values
and ethics in Innovation for Responsible Technology in Europe” (Virt-EU) funded under
Horizon 2020 ICT-35-RIA call Enabling Responsible ICT-related Research and Innovation.

References
3http://www.borgelt.net/eclat.html
4http://eigen.tuxfamily.org
5https://spectralib.org
6http://www.mapequation.org
7https://github.com/HowardHinnant/date

Journal of Statistical Software 23

Afsarmanesh N, Magnani M (2018). “Partial and Overlapping Community Detection in
Multiplex Social Networks.” In Social Informatics.

Barabási AL, Albert R (1999). “Emergence of Scaling in Random Networks.” Science,
286(5439), 509–512. ISSN 0036-8075. doi:10.1126/science.286.5439.509. http:
//science.sciencemag.org/content/286/5439/509.full.pdf, URL http://science.
sciencemag.org/content/286/5439/509.

Berlingerio M, Coscia M, Giannotti F, Monreale A, Pedreschi D (2012). “Multidimen-
sional Networks: Foundations of Structural Analysis.” World Wide Web. ISSN 1386-
145X. doi:10.1007/s11280-012-0190-4. URL http://link.springer.com/10.1007/
s11280-012-0190-4.

Berlingerio M, Pinelli F, Calabrese F (2013). “ABACUS: Apriori-Based Community Discovery
in Multidimensional Networks.” Data Mining and Knowledge Discovery, 27.

Brodka P, Chmiel A, Magnani M, Ragozini G (2018). “Quantifying Layer Similarity in
Multiplex Networks: A Systematic Study.” Royal Society open science, 5(8).

Butts CT (2008). “network: A Package for Managing Relational Data in R.” Journal of
Statistical Software, 24(2). URL http://www.jstatsoft.org/v24/i02/paper.

Butts CT (2015). network: Classes for Relational Data. The Statnet Project (http://
statnet.org). R package version 1.13.0.1, URL http://CRAN.R-project.org/package=
network.

Butts CT (2016). sna: Tools for Social Network Analysis. R package version 2.4, URL
https://CRAN.R-project.org/package=sna.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695. URL http://igraph.org.

De Domenico M, Lancichinetti A, Arenas A, Rosvall M (2015). “Identifying Modular Flows on
Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems.”
Physical Review X, 5.

Dickison ME, Magnani M, Rossi L (2016). Multilayer Social Networks. Cambridge University
Press. ISBN 978-1107438750.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal
of Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08. URL http://www.
jstatsoft.org/v40/i08/.

Erdos P, Rényi A (1960). “On the Evolution of Random Graphs.” Publ. Math. Inst. Hung.
Acad. Sci, 5(1), 17–60.

Fatemi Z, Magnani M, Salehi M (2018). “A Generalized Force-Directed Layout for Multiplex
Sociograms.” In Social Informatics.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2003). statnet: Soft-
ware Tools for the Statistical Modeling of Network Data. Seattle, WA. URL http:
//statnetproject.org.

http://dx.doi.org/10.1126/science.286.5439.509
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509
http://science.sciencemag.org/content/286/5439/509
http://dx.doi.org/10.1007/s11280-012-0190-4
http://link.springer.com/10.1007/s11280-012-0190-4
http://link.springer.com/10.1007/s11280-012-0190-4
http://www.jstatsoft.org/v24/i02/paper
http://statnet.org
http://statnet.org
http://CRAN.R-project.org/package=network
http://CRAN.R-project.org/package=network
https://CRAN.R-project.org/package=sna
http://igraph.org
http://dx.doi.org/10.18637/jss.v040.i08
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://statnetproject.org
http://statnetproject.org

24 Multiplex Networks Analysis with R

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). “ergm: A Package to
Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical
Software, 24(3), 1–29.

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014). “Multi-
layer Networks.” Journal of Complex Networks, 2(3), 203–271. doi:doi:10.1093/comnet/
cnu016.

Magnani M, Rossi L (2011). “The ML-Model for Multi-layer Social Networks.” In ASONAM,
pp. 5–12. IEEE Computer Society. ISBN 9781612847580.

Magnani M, Rossi L (2013a). “Formation of Multiple Networks.” In Social Computing,
Behavioral-Cultural Modeling and Prediction, pp. 257–264. Springer-Verlag Berlin Heidel-
berg. ISBN 978-3-642-37209-4.

Magnani M, Rossi L (2013b). “Pareto Distance for Multi-layer Network Analysis.” In
AM Greenberg, WG Kennedy, ND Bos (eds.), Social Computing, Behavioral-Cultural Mod-
eling and Prediction, volume 7812 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Heidelberg. ISBN 978-3-642-37209-4. doi:10.1007/978-3-642-37210-0. URL
http://link.springer.com/10.1007/978-3-642-37210-0.

Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010). “Commu-
nity Structure in Time-Dependent, Multiscale, and Multiplex Networks.” Science,
328(5980), 876–878. ISSN 0036-8075. doi:10.1126/science.1184819. http:
//science.sciencemag.org/content/328/5980/876.full.pdf, URL http://science.
sciencemag.org/content/328/5980/876.

Ostoic AR (2018). multiplex: Algebraic Tools for the Analysis of Multiple Social Networks.
R package version 2.9, URL https://CRAN.R-project.org/package=multiplex.

Ripley RM, Snijders TAB, Bóda Z, Vörös A, Preciado P (2018). “Manual for Siena version
4.0.” Technical report, Oxford: University of Oxford, Department of Statistics; Nuffield Col-
lege. R package version 1.2-12., URL https://www.cran.r-project.org/web/packages/
RSiena/.

http://dx.doi.org/doi:10.1093/comnet/cnu016
http://dx.doi.org/doi:10.1093/comnet/cnu016
http://dx.doi.org/10.1007/978-3-642-37210-0
http://link.springer.com/10.1007/978-3-642-37210-0
http://dx.doi.org/10.1126/science.1184819
http://science.sciencemag.org/content/328/5980/876.full.pdf
http://science.sciencemag.org/content/328/5980/876.full.pdf
http://science.sciencemag.org/content/328/5980/876
http://science.sciencemag.org/content/328/5980/876
https://CRAN.R-project.org/package=multiplex
https://www.cran.r-project.org/web/packages/RSiena/
https://www.cran.r-project.org/web/packages/RSiena/

Journal of Statistical Software 25

Affiliation:
Matteo Magnani
InfoLab
Department of Information Technology
Uppsala University
Sweden
E-mail: matteo.magnani@it.uu.se
and
Luca Rossi
DssLab
IT University of Copenhagen
Denmark
E-mail: lucr@itu.dk
and
Davide Vega
InfoLab
Department of Information Technology
Uppsala University
Sweden
E-mail: davide.vega@it.uu.se

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:matteo.magnani@it.uu.se
mailto:lucr@itu.dk
mailto:davide.vega@it.uu.se
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

	Introduction and background
	The RcppRMLNetwork class
	Adding, retrieving and deleting network objects
	Handling attributes

	Input, output and generation of RMLNetwork data
	Importing and exporting data
	Generation
	Predefined data

	Data exploration
	Measuring a network
	Layer comparison
	Degree and degree deviation
	Neighborhood and exclusive neighboorhood
	Relevance
	Distances

	Community detection
	Conclusion

