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Computing layer similarities is an important way of
characterizing multiplex networks because various
static properties and dynamic processes depend
on the relationships between layers. We provide a
taxonomy and experimental evaluation of approaches
to compare layers in multiplex networks. Our
taxonomy includes, systematizes and extends existing
approaches, and is complemented by a set of practical
guidelines on how to apply them.

1. Introduction
Multiplex networks provide a simple yet expressive
way to model a wide range of physical and social
systems as sets of entities connected by multiple types
of relationships, that in this paper we also call layers
following the terminology in [23]. For example, a
transport network can be modelled as a set of locations,
such as cities or streets, connected by different types
of public transport like airplanes, trains, and buses.
Several studies have investigated the connection between
layer similarity and other properties of the network.
For example, we know from previous research that the
relationships between layers have an impact on dynamic
processes such as behaviour and information diffusion
[35].
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Being able to measure relationships between layers is also essential to validate models aimed
at explaining the formation of empirical multilayer networks [28,29]. While the problem of
comparing different networks has been thoroughly investigated in the literature [1,4,9,17,19,31,
33,38,42], the problem of quantifying layer similarity where the same nodes can be present in
multiple layers (which characterizes multiplex networks) has not been studied in a systematic
and comprehensive way so far.

In the literature, we can find a large number of works using layer similarity measures, but most
use them as a tool to study other phenomena such as multiplex network generation [21,28,29],
link prediction [7] and spreading processes [35]. As a result, different works use the same or very
similar approaches presented with different names, the relationships between several of these
similarity measures have not been explored, and there are no guidelines on how to quantify
layer similarity in multiplex networks, e.g., how to choose the appropriate measure given a
specific dataset. In addition, various potentially useful layer comparison measures have not been
considered yet.

Therefore, in this paper we provide the following contributions: (i) a systematic study of
approaches and measures to compute the similarity between layers in multiplex networks, based
both on a literature study and on a theoretical framing of the problem; (ii) a set of measures that
have not been used yet to compare layers, complementing those already defined in the literature;
(iii) an empirical study of the relationships between different measures, compared on several real
datasets, and (iv) a set of guidelines on how to choose and use these measures.

In Section 2 we present the definitions, concepts, and notation used in the paper. In Section 3
we present an organized set of existing and new layer similarity measures. Section 4 provides
the results of an empirical study where the main similarity measures are applied to several
real datasets from different domains, such as genetic networks, social networks, co-authorship
networks, and transport networks. Section 5 discusses guidelines to be used to select the most
appropriate measure.

2. Concepts, terminology and notation
In this section, we define the basic concepts needed to provide a systematic coverage of layer
similarity measures. We start with the standard definition of multiplex network, followed by an
alternative representation called property matrix allowing us to define similarity functions based
on different types of network structures and different ways to look at them.

In this paper we use the following definition of multiplex network:

Definition 1 (Multiplex network). Given a set of nodesN and a set of layers L, a multiplex network is
defined as a quadrupleM = (N ,L, V, E) where (V,E) is a graph, V ⊆N × L, and if (n1, l1, n2, l2)∈E
then l1 = l2.

An example of multiplex network is shown in Figure 1, where L= {l1, l2}, N = {n1, . . . , n6},
and (n1, l1, n2, l1) is an example of an edge in E. In the literature alternative terminologies are
used, and here we adopt the one in [23], according to which we would say that node n1 is present
in both layer l1 and layer l2. In the literature some extended multiplex models have also been
proposed, allowing multi-dimensional layers [23] and one-to-many relationships between nodes
in different layers [27], but we do not consider these extensions here.

Please note that the original definition of multiplex network introduced in the field of Social
Network Analysis was more restrictive than the one adopted in this paper. In particular, our
definition allows some of the nodes not to be present in some layers. For example, (n5, l2) /∈
V in Figure 1. In some cases, when the term multiplex is used it is assumed that all nodes are
present in all layers, and this assumption will often affect the result of layer comparisons. To avoid
confusion, in this case we explicitly talk about a node-aligned multiplex network [23] and when it is
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Figure 1: An example of a multiplex network consisting of two layers, six nodes, and ten edges.

Table 1: Terminology and notation used in the paper

Symbol Name
N set of nodes {n1, n2, ..., n|N |}
L set of layers {l1, l2, ..., l|L|}
P property matrix
C set of contexts (e.g., network layers, snapshots, groups)
S set of structures (e.g., nodes, edges, dyads, triangles)
pc property vector for context c∈C
ps property vector for structure s∈ S
ps,c property of s in c (e.g., degree of node s on layer c)
pC′,S′ p restricted to contexts in C′ ⊆C and structures in S′ ⊆ S

not clear from the context we will call a multiplex network that is not node-aligned a generalized
multiplex network.

Definition 2 (Node-aligned multiplex network). A node-aligned multiplex network is a multiplex
network (N ,L, V, E) where ∀n∈N , l ∈L : (n, l)∈ V .

n1 n2 n3 n4 n5 n6
n1 0 1 0 0 1 0
n2 1 0 1 1 1 0
n3 0 1 0 1 0 0
n4 0 1 1 0 0 0
n5 1 1 0 0 0 0
n6 0 0 0 0 0 0

(a) Al1

n1 n2 n3 n4 n5 n6
n1 0 0 0 1 0 0
n2 0 0 1 1 0 0
n3 0 1 0 1 0 0
n4 1 1 1 0 0 0
n5 0 0 0 0 0 0
n6 0 0 0 0 0 0

(b) Al2

Figure 2: Adjacency matrices for both layers of the multiplex network in Figure 1
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Multiplex networks have usually been represented as a set of adjacency matrices Al, one for
each layer l, where al(n1, n2) = 1 if there is an edge between node n1 and node n2 in layer l,
al(n1, n2) = 0 otherwise. The adjacency matrices for our working example are shown in Figure 2.

However, this representation is not the most appropriate to define similarity measures, for two
main reasons. First, it is incomplete, because it only allows representing node-aligned multiplex
networks. An example of why this is important is the case of online social media, where each layer
represents a different service (Twitter, Facebook, etc.) and it makes a difference whether a user has
no connections on Twitter or does not even have an account there. In our working example, we
would lose the information that nodes n5 and n6 are present in different layers.

Second, adjacency matrices present an edge-oriented view over the multiplex network, which
might be the reason why most similarity measures in the literature have been limited to edge
similarity. If we take a broader look at empirical networks, we can see how other structures can
be relevant. As an example, if we look at Figure 1 we can see that the triangle {n2, n3, n4} is
present in both layers. Unfortunately, this is not obvious from the adjacency matrices and would
require checking several disparate entries making definitions more complicated than needed.
Therefore, in the following, we use network representation targeted to the specific properties
we want to consider when checking the similarity between layers. We call this representation a
property matrix.

Definition 3 (Property matrix). A property matrix P is a matrix where:

(i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . . ),
(ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups,

snapshots, . . . ), and
(iii) ps,c is the value of an observational function mapping each pair structure/context into a number

(degree, distance, . . . ).

Since in this paper we focus on layer similarity we will only use layers as contexts, that is, C =

L. In summary, each cell ps,c of a property matrix contains the value of the function describing
the structure s (for example, a node) on layer c, and different observational functions can be used
to define different types of similarity. Examples of property matrices for our working example are
shown in Figure 3.

Given a structure s, we can further summarize its presence in the network by summing
over all the values in ps, computing their standard deviation or performing any other kind of
aggregation (sum, avg, median, min, max, etc.). As an example, from a node-degree property
matrix (Figure 3b) we can obtain the total degree of a node in the whole multiplex network (sum)
or its so-called degree deviation [6], which is 0 if a node has the same number of connections on all
layers and higher when a node is present in different layers with different degrees, and so on. In
summary, property matrices provide a more general and informative representation of multiplex
networks than adjacency matrices – which are still useful when the objective is just to know
about the edges in a node-aligned network. Property matrices also allow us to provide simple
and general mathematical definitions of different ways to compare layers, which will instantiate
into several existing and new measures when specific property matrices are used.

3. Layer similarity functions
Given a property matrix P where each row represents a layer, we can compare two layers in three
main ways. The first is to summarize each row using an aggregation function f and compare
f(pl1) to f(pl2). For example, if the property matrix contains node degrees we can compare the
layers’ average degrees mean(pl1) and mean(pl2). Comparing the distribution of values in pl1
and pl2 is the second way to compare layers. As an example, we can compare degree distributions
on different layers and find that both fit well a power law distribution with the same exponent.
The third way is to compare ps,l1 with ps,l2 for all s. As an example, we can compute degree
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n1 n2 n3 n4 n5 n6
l1 1 1 1 1 1 0
l2 1 1 1 1 0 1

(a) Nodes, existence

n1 n2 n3 n4 n5 n6
l1 2 4 2 2 2 NA
l2 1 2 2 3 NA 0

(b) Nodes, degree

n1 n2 n3 n4 n5 n6
l1 2 1/3 1 1 1 NA
l2 1 1 1 1/3 NA 0

(c) Nodes, CC

(n1, n2) . . . (n2, n4) . . .
l1 1 . . . 1 . . .
l2 0 . . . 1 . . .

(d) Dyads, edge existence (clique)

n1, n2, n3 . . . n1, n2, n5 . . . n1, n2, n6 . . . n2, n3, n4 . . .
l1 0 . . . 1 . . . 0 . . . 1 . . .
l2 0 . . . 0 . . . 0 . . . 1 . . .

(e) Triads, triangle existence (clique)

Figure 3: Property matrices for our working example in fig. 1. Each property matrix is defined by a
type of structures (nodes, dyads, triads, etc.), the contexts (layers) and an observational function
(existence, degree, forming a clique, distance, etc.)

correlation to check whether nodes with a high (resp., low) degree on one layer tend to have a
high (resp., low) degree also on the other layer.

(a) Comparing aggregations of layer property vectors
This first class of comparison methods is based on comparing f(pl1) to f(pl2) using various
functions (f ) aggregating each layer into a single value. Typical choices are basic statistical
summary functions such as mean, max, sum, skewness and kurtosis, combinations of the simple
statistics, such as the coefficient of variation (the ratio between the standard deviation and
the mean), the Jarque-Bera statistics (a combination of skewness and kurtosis), or the Shannon
entropy [37] of the distribution. These methods are summarized in Table 2.

Then, given f(pl1) and f(pl2) we can compare them, and in our experiments we have used
their relative difference, i.e. 2 · (|f(pl1)− f(pl2)|)/(|f(pl1)|+ |f(pl2)|).

Notice that depending on the property matrix these measures correspond to various existing
network summaries. For example, the mean function may return the average degree (when
applied to property matrices about node degrees, or the global clustering coefficient also known
as transitivity index (for node clustering coefficients), or the average path length for property
matrices about dyads and geodesic distances (which in the field of chemistry coincides with the
Wiener index [45]).

Whether the multiplex network is node-aligned or not does not pose any problems regarding
the computation of the functions in Table 2. These functions are computed for each layer, only for
the nodes existing on the layer, so if some nodes are not present they are just not considered in the
computation. However, the results of the function and of the comparison can be strongly affected,
as shown in our experimental results.

(b) Comparing distributions of layer property vectors
While using a single value to compare layers can provide some useful knowledge about the
multiplex network, for example by highlighting the presence of denser or more clustered layers
than others, looking at the whole distribution of values in the property matrix can reveal other
types of relationships among layers. From a statistical point of view, some ways are open to
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Table 2: Summary of common aggregation functions for property matrices

Name Function

mean(pl)
∑

s ps,l
card(pl)

sd(pl)

√∑
s(ps,l−mean(pl))

2

card(pl)

skew(pl)
∑

s(s,l−mean(pl))
3

card(pl)sd(pl)3

kurt(pl)
∑

s(ps,l−mean(pl))
4

card(pl)sd(pl)4

entropy(pl)
∑k
k=1 frk,l log frk,l

CV (pl)
sd(pl)

mean(pl)

Jarque−Bera(pl)
card(pl)

6

(
skew(pl)

2 +
(kurt(pl)−3)2

4

)
frk,l is the relative frequency of the k-th value of the property vector pl
in a generic layer l

pursuing this task. The first one consists in comparing the moments of two distributions. For
example, it is possible to compare the first four moments, even if from a theoretical point of
view this is not completely sufficient. Another possible approach consists in comparing the
distributions directly. In this case, we have to apply to each property vector a function fr(pl) that
derives the relative frequency distribution. In case of discrete distributions, such as the degree
distribution, given a property vector pl we derive the disjoint values pk,l, k= 1, . . . ,K, and we
associate to each value the relative frequency frk,l.

In case of continuous distribution, or in case of very large networks in which also the discrete
distributions take a wide range of values, the function fr(pl) derives histograms. We first divide
the range of values of the property vector intoK equal interval, or bins, [b(k−1), bk], with b0 being
the minimum value in the property matrix and bK,l being the maximum value in the property
matrix1. Then we associate the relative frequency frk to each interval. Note that the bins of all
histograms for all layers must be the same. Then we have to compare only the relative frequency
distributions. This procedure is very fast and efficient also for very large networks.

Given the frequencies or histograms, in order to compare two layers we can use the distance
between observed distributions based on distance between histograms, namely, the dissimilarity
index (ID), the Kullback-Leibler divergence DKL [26], the Jensen-Shannon divergence DJS or
the Jeffrey divergence DJ , as defined in Table 3 [12]. In the following, we do not consider the
Jeffrey divergence, as the Jensen-Shannon divergence is its smoother version. Note that this kind
of comparison can be made both for node-aligned and for not node-aligned multiplexes.

Table 3: Main methods to compare distributions across layers

Name Notation Function
Dissimilarity index ID(pl1 ,pl2)

1
2

∑K
k=1 |frk,l1 − frk,l2 |

Kullback-Leibler DKL(pl1 ,pl2)
∑K
k=1 frk,l1 log

frk,l1
frk,l2

Jensen-Shannon DJS(pl1 ,pl2)
1
2 (
∑K
k=1 frk,l1 log

frk,l1

f̂rk
+ frk,l2 log

frk,l2

f̂rk
)

Jeffrey DJ (pl1 ,pl2)
∑K
k=1 frk,l1 log

frk,l1
frk,l2

+
∑K
k=1 frk,l2 log

frk,l2
frk,l1

where: f̂ rk =
frk,l1

+frk,l2
2

1If we only compare two rows, we can also choose the minimum and maximum values in those rows.
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(c) Comparing individual structures
The main feature of multiplex networks is that the same structure can be present or not, and have
different characteristics, on each layer. For example, a node can be present in one layer and not
in the other, or the same node may have different degrees depending on the layer. Therefore, a
peculiar set of measures to compare layers relies on the comparison of the structures of interest,
one by one.

Two main cases are possible. In property matrices indicating the existence of different
structures on the different layers, we only have two values, 0 and 1. While represented as
numbers, these are in fact just nominal values indicating that the structure is present on the layer.
For these binary matrices specific methods can be used, checking the overlapping or more in
general, the common existence (or common absence) of structures across layers. For numerical
matrices containing generic numbers, e.g., node degrees, other methods are more appropriate, as
described in the following two sections.

(i) Binary properties

When a structure can be present or not on different layers, a basic way to compute the similarity
between layers is to quantify the overlapping of these structures, that is, how often the same
structure appears or not on more than one layer. This is typically the case when the observation
function defining the property matrix checks the existence of the structure.

Measures of overlapping have been defined and redefined many times during the last few
years in different papers, but most definitions can be generalized using property matrices as:

Cp′l1 · pl2 , (3.1)

where C is some normalization function. Most (but not all) measures in the literature compare
edges across layers, this being the result of the traditional edge-based definitions of multiplex
networks such as adjacency matrices. In our definition, the usage of property matrices allows us
to apply similar comparisons to various other properties.

Consider two binary property vectors pl1 and pl2 . Following [2] let us denote with:

- a= p′l1 · pl2 the number of properties that l1 and l2 share;
- b= p′l1 · (1− pl2) the number of properties that l1 has and l2 lacks;
- c= (1− pl1)

′ · pl2 the number of properties that l1 lacks and l2 has;
- d= (1− pl1)

′ · (1− pl2) the number of properties that both l1 and l2 lacks;
- m= a+ b+ c+ d= length(pl1) = length(pl2)

Then, the binary similarity functions can be summarized as in Table 4.

Table 4: Similarity functions for binary property matrices. Column C indicates the normalization
function in Eq. 3.1. For the two functions also considering the non-existence of structures on both
layers, we only provide the standard definition not based on the product of property vectors

Name Normalization function C Standard notation
Russel-Rao 1

length(pl1
)

a
m

Jaccard 1
length(pl1

)−(1−pl1
)′·(1−pl2

)
a

m−d
Coverage 1

length(pl1
)

Kulczyński 1
2 (

1
‖pl1
‖1 + 1

‖pl2
‖1 )

a
2 (

1
a+b +

1
a+c )

Simple matching coefficient (SMC) NA a+d
m

Hamann NA a+d−(b+c)
m
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(ii) Numerical properties

Depending on the reason why we are computing the similarity between layers, we can use
different approaches. As each layer is represented as a vector in a property matrix, one way is
to compute vectorial distances such as Euclidean distance or cosine similarity. Another popular
way to compare numerical layer property vectors is to compute correlations. An example of this
is the so-called inter-layer correlation measure, which is just the Pearson coefficient computed on
two node degree property vectors [5,30]. It is interesting to notice that in the literature correlations
across layers have been almost always computed on node degrees, and in [3] also on clustering
coefficients. However, correlations can be in fact be computed on any property matrix.

When computing correlations in generalized multiplex networks a choice must be made on
how to handle actors not present in all layers. The choice we adopted in our experiments was
to discard pairs where at least one of the two values was missing, which is a typical option in
statistical software packages.

Table 5: Similarity functions for numerical property matrices. The function ρ(·) provides the ranks
of the values in the property vectors

Name Function

Cosine Similarity
p′

l1
·pl2

‖pl1
‖·‖pl2

‖

Person Correlation Coefficient [pl1
−mean(pl1

)]′·[pl2
−mean(pl2

)]

‖[pl1
−mean(pl1

)]‖·‖[pl2
−mean(pl2

)]‖

Spearman Correlation Coefficient [ρ(pl1
)−mean(ρ(pl1

))]′·[ρ(pl2
)−mean(ρ(pl2

))]

‖[ρ(pl1
)−mean(ρ(pl1

))]‖·‖[ρ(pl2
)−mean(ρ(pl2

))]‖

4. Empirical comparison of measures
The experiments have been performed using the multinet library2 and twenty-three multilayer
networks3. The input format of the multinet library allows the distinction between nodes without
connections and missing nodes, as in our working example, but none of the datasets we have
used explicitly makes this distinction.

In the experiments, we have computed the similarity between all pairs of layers in each dataset
and grouped these results by network type (Table 6). Figures 4, 5 and 6 show the properties
of distribution of values produced by each measure. Figures 7, 8, 9 and 10 show the Pearson
correlation between values obtained by different measures, where a value of 1 (yellow in the
colour figures) indicates that two measures are equivalent up to some constant rescaling. In
addition to the results presented in these figures, we have also performed a manual qualitative
analysis of the results, to verify our interpretation of the patterns emerging in the plots.

In the following sections, we highlight some of the results, grouped into four main areas.

(a) Correlation-based measures
Looking at Figures 4 and 5 we can see how correlation measures (15, 16, 31, 32) prove their
usefulness by discriminating between, e.g., social networks, where the degrees are correlated —
that is, (un)popular people are often (un)popular on more than one layer, while for co-authorship
networks where layers indicate different disciplines researchers are often popular only in one or
a few of them. Interestingly, transport networks contain different extremes: airports that are hubs
for one airline are often not hubs for others (corresponding to anti-correlations, that is, values

2https://cran.r-project.org/package=multinet
3http://deim.urv.cat/~manlio.dedomenico/data.php

https://cran.r-project.org/package=multinet
http://deim.urv.cat/~manlio.dedomenico/data.php
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Table 6: Twenty-three multilayer networks used during experiments

ID Network Description # of layers Ref.
1 Bos Linnaeus Genetic 4 [41]
2 Candida Albicans Genetic 7 [41]
3 Celegans Genetic, 6 [41]
4 Danio Rerio Genetic 5 [41]
5 Gallus Gallus Genetic 6 [41]
6 Hepatitus C Genetic 3 [41]
7 Human Herpes Virus Genetic 4 [41]
8 Human HIV Virus Genetic 5 [41]
9 Oryctolagus Genetic 3 [41]
10 Plasmodium Falciparum Genetic 3 [41]
11 Rattus Norvegicus Genetic 6 [41]
12 Xenopus Laevis Genetic 5 [41]
13 Ckm Physicians Innovation Social 3 [11]
14 AUCS Social 5 [34]
15 Florentine Families Social 2 [32]
16 Kapferer Tailor Shop Social 4 [22]
17 Krackhardt High Tech Social 3 [25]
18 Lazega Law Firm Social 3 [39]
19 Vickers Chan 7thgraders Social 2 [43]
20 Arxiv Network Science Co-authorship 13 [13]
21 Pierre Auger Co-authorship 16 [13]
22 EU Air Transportation Transport 37 [10]
23 London Transport Transport 3 [15]

towards 1 in the figures) while for the London data the same locations are often hubs for different
types of transportation, resulting in positive correlations.

In many cases, Pearson and Rank correlations show similar results.

(b) Overlapping-based measures
Overlapping-based measures have been used multiple times in the literature, mainly applied
to edges. In Figure 6 we can observe their behaviours on the various datasets used in our
experiments.

Measures based on Simple Matching, Russel-Rao and Hamann degenerate whenever the
property vectors become large (that is, m is large) and sparse (that is, d is close to m). In these
cases, Russel-Rao tends to 0 while Hamann and SMC tend to 1, as we can see in the plots.
However, with node-existence property matrices, these degeneration conditions are often not
verified, so these measures can still capture different levels of similarity.

When applied to generalized multiplex networks, node overlapping shows significant
differences between different types of networks. For example, in Figure 6b we can see that social
networks tend to have a high node overlapping (average close to one for measures 34-36), while
for example, co-authorship networks show values closer to 0, indicating a significant difference
between people working in different disciplines (Figure 6c). In practice, we can say that many
social networks are naturally node-aligned.

However, in both cases, we can see several outliers, highlighting special relationships between
layers and thus showing the usefulness of these measures also to identify special cases. For
example for the Arxiv co-authorship network (20 in Table 6) the two layers physics.data-
an (Physics Data Analysis, Statistics and Probability) and cs.SI (Computer science Social
and Information Networks) are very similar in terms of node overlapping, indicating an
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Table 7: Fifty measures evaluated during experiments

1 min degree 17 min CC 33 SMC node
2 max degree 18 max CC 34 Jaccard node
3 sum degree 19 sum CC 35 Kulczyński node
4 mean degree 20 mean CC 36 coverage node
5 standard deviation degree 21 standard deviation CC 37 Russel-Rao node
6 skewness degree 22 skewness CC 38 Hamann node
7 kurtosis degree 23 kurtosis CC 39 SMC edge
8 entropy degree 24 entropy CC 40 Jaccard edge
9 CV degree 25 CV CC 41 Kulczyński edge
10 Jarque-Bera degree 26 Jarque-Bera CC 42 coverage edge
11 Dissimilarity index degree 27 Dissimilarity index CC 43 Russel-Rao edge
12 KL divergence degree 28 KL divergence CC 44 Hamann edge
13 JS divergence degree 29 JS divergence CC 45 SMC triangle
14 Cosine distance degree 30 Cosine distance CC 46 Jaccard triangle
15 Pearson correlation degree 31 Pearson correlation CC 47 Kulczyński triangle
16 Spearman correlation degree 32 Spearman correlation CC 48 coverage triangle

49 Russel-Rao triangle
50 Hamann triangle

interdisciplinary topic which is of interest to both computer scientists and physicists. Another
example, this time for social networks, comes from the AUCS network (14 in Table 6). Almost all
outliers are related to the two layers Facebook and co-author, both having a significantly different
number of actors if compared with the other layers in the network, which explains, e.g., low
overlapping.

Higher order structures, that is, dyads and triads in our experiments, also show different
behaviours in different types of networks. There are several similar layers in collaboration
networks, maybe because these networks are often obtained as projections from bipartite
networks, but still, the majority of the pairs of layers are not very similar. For social networks,
a high overlapping is observed much more frequently, also because of the high presence of
triangles, while transportation and genetic networks show the least overlapping.

(c) Effects of node alignment
The impact of using a node-aligned or generalized multiplex is evident in many experimental
results, as expected. Obviously, node-based measures computing the overlapping among nodes
in different layers (33-38) become useless if we force all layers to contain all nodes (Figure 6,
right-hand-side plots).

At the same time, using node-aligned networks also affects many other measures. As an
example, Figure 4d shows the presence of anti-correlated layers (measures 15 and 16, left-hand-
side, values close to -1), revealing how airports that are hubs for one airline are often not hubs for
others. Considering many nodes that would not be present in the layers, and thus having degree
0, makes these anti-correlations less evident (measures 15 and 16, right-hand-side, values now
closer to 0).

For edge- and triangle-based overlapping measures the results are the same in the node-
aligned and in the non-aligned networks. This, however, only because we have not made a
difference between, e.g., a missing triangle and missing triad, which would be computationally
demanding. This also shows how the results we obtain may strongly depend on how we modelled
the data and on implementation details such as the policy to handle null values.
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(c) Co-authorship networks
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(d) Transport networks

Figure 4: Boxplots for degree based measures (1-16). Left: generalized multiplex network, right:
node-aligned multiplex network. The outliers have been scattered.

Correlations between different measures appear more evidently in node-aligned networks.
This effect is more evident for genetic networks and co-authorship networks. In these cases, the
zeros added by the alignment reinforce the correlation among the measures.

(d) Correlation between measures
In Figures 7 - 9 the value for each cell on the heat map is calculated in the following way.
First layer-layer similarity for each pair of layers is calculated, for each network. For example,
if the network has three layers it will have nine values of similarity. Next, for each network
type (Genetic, Social, Co-authorship, Transport) and each similarity measure a vector containing
the layer-layer similarities for all networks of that type is created. Finally, Person correlation
coefficients are computed for these pairs of vectors, each representing all the similarities
computed using one of the measures in one of the groups.

Groups of measures producing highly correlated values can be identified in the figures,
appearing as yellow rectangles (colour figures). In case of social networks and co-authorship
networks, we can see a higher correlation between degree-based measures (1-16) and measures
based on the clustering coefficient (17-32).
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(c) Co-authorship network
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(d) Transport networks

Figure 5: Boxplots for clustering coefficient based measures (17-32). Left: generalized multiplex
network, right: node-aligned multiplex network. The outliers have been scattered.

5. Guidelines
From our literature study, theoretical framing and experiments it appears how layer comparison
measures can be very valuable and often succeed in practice to characterize the structure of
multiplex networks, but they are not always straightforward to use. Therefore, in this section,
we list a set of guidelines motivated by our experience acquired while testing these measures and
by the results presented in the previous section.

One important aspect to consider when choosing which function to use is the distribution of
values in the property matrix. Among the criteria that can be used to characterize layer property
vectors and comparison functions, the following appear to be useful:

• Sparsity: A layer property vector is sparse if the number of 0s is much higher than the
number of non-0 values.
• Degeneracy: A layer property vector degenerates if its values are (almost) constant.

Sparsity is a special case of degeneracy.
• Linearity: A layer property vector is linear if the values in the vector and their rank are

linearly correlated.
• Scale invariance: a similarity function is scale invariant if it does not (significantly) change

when one or more layer property vectors are multiplied by a constant.
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(c) Co-authorship network
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(d) Transport networks

Figure 6: Boxplots for node-, edge- and triangle-based measures (33-50). Left: generalized
multiplex network, right: node-aligned multiplex network. The outliers have been scattered.

We now list our guidelines, divided into four main areas.

(a) Number of measures
The number of available measures is very large, considering that the fifty options used in
our experiments are only some of the measures we can obtain using different combinations of
property matrices and observation functions. While the choice of the measures to be used for a
specific empirical network is of course influenced by what the analyst is interested in, e.g., degree-
based similarity, betweenness-based, or specific motifs that are motivated by the application
context, our experiments show that different measures highlight different types of similarities.

At the same time, even during exploratory analyses where it is often useful to compute several
measures to get a good overview of the data, it can be practically preferable to identify a small
number of measures. This can be due to time constraints, if the data is large, but also to the
need of producing results that are easy to interpret and present. The choice of which measures to
use can be simplified using the correlation plots in Figures 7 - 9. Groups of measures producing
highly correlated values can be identified, and one measure for each group can be chosen. In
particular, JS, KL and D divergences are similar, and JS divergence can be used from this group.
Jaccard, coverage and Kulczyński are similar, and Jaccard or coverage can be used — with the
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Figure 7: Correlation between all fifty measures for Genetic networks. Left: generalized multiplex
network, right: node-aligned multiplex network. NaN is marked in white.
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Figure 8: Correlation between all fifty measures for Social networks. Left: generalized multiplex
network, right: node-aligned multiplex network. NaN is marked in white.

latter highlighting how the non-overlapping structures are distributed across the two layers, e.g.,
if one layer is containing the other.

When comparing layers by comparing a single value, particular attention should be paid
to the so called discriminative power or uniqueness of the measure, i.e., the capability of a
measure of taking different values on non-isomorphic networks [24]. For example, while mean
is not a representative measure for non-regular distributions, it can still be used to compare two
distributions, such as degree distributions. But not alone, because the same degree does not imply
the same topology.



15

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 9: Correlation between all fifty measures for Co-authorship networks. Left: generalized
multiplex network, right: node-aligned multiplex network. NaN is marked in white.
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Figure 10: Correlation between all fifty measures for Transport networks. Left: generalized
multiplex network, right: node-aligned multiplex network. NaN is marked in white.

While min can be useful in general to characterize a distribution if used together with other
statistical summaries, it does not appear to be very useful to compare layers where there is
typically at least one node having value 0. For example, min degree is 0 for all layers for most
networks. On the contrary, max can be useful, e.g., to include the size of the layers in the
comparison.
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(b) Node-alignment
The choice of whether a node-aligned or generalized multiplex model should be used is often
clear from the context. For example, we would typically not align nodes when layers represent
different social network sites, to represent the fact that users may not have accounts on some sites,
while we would typically align nodes in a multirelational network about people interacting in
multiple ways, where not having edges on a layer does not imply that the person cannot interact
in that specific way.

However, the choice may have a significant influence on the results of our analysis as
highlighted by our experiments.

Node-alignment may lead to some degeneracy. As expected, node-existence measures become
useless, but also other cases are affected, such as measures 11-16 (degree) and 27-32 (clustering
coefficient).

Measures based on node existence may also help us interpreting the results of other measures.
So, before using link-based measures (such as edge Jaccard) it is important to check node
overlapping to understand whether comparing higher order structures is meaningful, or whether
the results will just be a consequence of the limited amount of node overlapping across layers.

Rank correlation can suffer from node alignment because of false tie resolution, and also
Pearson correlation results may become less evident, as shown by the experiments where positive
and/or negative correlations are lost or decreased depending on the type of networks.

(c) Sparsity
SMC and Hamann are only useful for non-sparse, non-degenerated cases, which in our
experiments correspond to node existence on generalized networks. Russel-Rao also suffers if
property vectors are sparse. As an example, these measures do not work well for triangle-
existence property matrices in general.

(d) Linearity
Having non-linear distributions of values in the property vectors, as it is the case for degree
property matrices, is not problematic when computing linear correlation. Linear correlation
(Pearson) is often preferable to rank correlation, which can be problematic in case of generalized
networks (because of null values) and also for node-aligned networks (because of the many nodes
with the same values).

6. Conclusion
A summary of our guidelines is that there are many ways to compare layers, but (1) not all
methods are always appropriate, and (2) some are often correlated, which means that if we only
want a small number of layer similarities we can give priority to one for each group of related
measures.

As we mentioned in the introduction, our framework captures several measures appeared in
the literature: node activity overlapping [30], global overlapping of edges [8] and absolute binary
multiplexity [18] are applications of the Russel-Rao function to node and edge existence property
vectors, average edge overlap [16] and [3] are respectively the Jaccard and coverage functions
applied to edge existence. A general recommendation is to use the original names, as we do in
this article: all the measures used in this work and mentioned in this paragraph are applications
of existing proximity measures, most of them well known to data analysts. Calling them by their
name, such as edge Jaccard, makes it simpler to understand when it is reasonable to apply them
if we already know the original measure.

Also, notice that our framework allows the definition of a large number of other functions
not tested in this article, also considering directed/undirected networks, weights, and other
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mesostructures such as motifs. Other network summary functions that are not specific for
multiplex networks can also be obtained as combinations of property matrices and observational
functions. Examples are order (node existence + sum), size (edge existence + sum), density (edge
existence + mean), average path length (dyad distance + mean), etc. We believe that splitting the
problem of computing layer similarities into the two problems of (1) deciding what to observe
and (2) deciding how to compare these observations using existing generic comparison functions
gives the analyst the ability to easily generate custom layer comparisons that are appropriate for
the problem at hand.
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